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I. INTRODUCTION 

Investigators in multiphase mechanics often do not agree on the formulation of the force due 
the interaction of static pressure P and volume fraction ak of phase k. Discussions of the PVak 
term in the momentum equation of multiphase mechanics were given in various publications in 
the past few years. 

The present study takes into account various views on this matter with the aim of clarifying 
and resolving the differences via basic considerations. 

2. BACKGROUND 

When dealing with a component k of a molecular mixture of u components with disparate 
mass motion, the equation of its i-th component of momentum takes the form (neglecting mass 
transfer and field forces): 

au,~ = _ OPk + ~ O',,.,)j, 
p, + pkV,~ axj ox, 

+ok ~ F~(U.- U~)+ [p~(Ukj- U.jXUe- U.,)]. 
(l,i~k) 

[1] 

where t is the time and xj is the j-th cartesian coordinate, pk, Ue are the density and the i-th 
component of velocity of species k respectively, ~ is the viscous stress of component k in the 
mixture (subscript m) and'Fa is the inverse relaxation time for momentum transfer from other 
components ! to k. The last term of [1] is the inertial coupling force (Soo 1967, 1976; Chao, 
Sha & Soo 1977), Um~ the mean velocity of mass motion is defined by: 

p,,,u.j = ~ ,  p,u,j  [2] 

and P, is the partial pressure of molecular component k. When summed over all the com- 
ponents, [1] gives: 

aU,,,i - OU,,,j= aP+O 
P"'-Oi - + p " u ' j  ax~ -~-~, ax~ 0'')~' [3] 
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where P is the static pressure of the mixture and the last two terms in[l] cancel out for the 
overall mixture, because they are internal actions and reactions. Equation[3] is, of course, a 
consequence of the Newtons law of motion when applied to a dispersed multiphase system 
(Soo 1967, 1967a). 

When formulating in terms of multiphase mechanics (Soo 1977), the above partial pressure 
Pk loses its meaning; clearly for stationary bubbles in a liquid, other than the effect of surface 
tension, the static pressure in the inside of each bubble is equal to that of the liquid in its 
vicinity. Considering the mutual exclusion of phases in a given space, multiphase mechanics 
(Soo 1976, 1977) gives (still neglecting mass transfer): 

pk ~ +.pkUk~ OUki : -- OPak + ~---, , . .  
3x~ 3xi Ox i ~ rmk h, 

~=l 0 ' ' 
+ Pk FkttUti- Uki)+-~jPk [tUk~- Umj)tU~- U.i)l+ Ikj+ Vk~. 

fig:k) 

[4] 

The last two terms are the forces due to the effect of virtual mass and unsteady fl~. ¢ field; 
these details (Soo 1967; Sha & Soo 1977) are not repeated here, so also the ~ffectr,~ncss of 
momentum transfer since they do not concern the present discussion directly. Note that in 
formulating[4], discrete bubbles k can be represented by a distributed density pk, large numbers 
of bubbles must exist in the control volume as compared to the number of those at the 
boundary of that volume. When bubbles become large as compared to the characteristic 
dimension of a flow system, each bubble should be treated as a domain, with the interaction at 
the boundary of a bubble treated in detail (Sha & Soo 1977). 

In order to explore fully the implication of the term VPct~ in the above, it is also useful to 
spell out the energy equation of phases which are derived corresponding to [4]. We also take 
note of the fact that the kinetic energy of the dispersed phase derived from the kinetic energy 
of the fluid in continuum phase (Soo 1967). For dispersed phase k, we have: 

OUk OU..._..g~ = _ OUmiPak , + Wk 
Pk - ~ "  + pUkj OX i c~Xi + qk 

+ a-f-~j pk(Ukj -- U~j)(u~ - u~), [5] 

where u~ is the internal energy, qk, Wk are the rate of heat transfer and the dissipation of work 
per unit volume respectively, -Um~(OadOxj) is the work of compression of bubbles k, the 
displacement work--ak(OUm~lOx i) is part of the work of the fluid (Sha & Soo 1977). 

3. A N  O V E R V I E W  

An overview of the term VPa = aVP + PVa in [4] includes those who favor (1) dropping 
PVa for reasons of making computation easier or from consideration of an interfacial source 
force, (2) retaining part of it as a stabilizing force and (3) retaining PVa for the reason of an 
extension of the continuum mechanics, as a compressive (or expansive) force and validity of 
the laws of thermodynamics. While details of these view are given below, it suffices to say that 
an all encompassing formulation for multiphase mechanics will be to replace, in the momentum 
equation, the term VPak by 

V P a k  - B k P V a k  = a k V P  + (1 - B k ) P V a k ,  [6] 

with Bk as a displacement factor; Bk is a function of particle size, fluid properties and flow 
characteristics, etc. The range of Bk covers: Bk = 0 for a suspension of small particles where Vak 
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arises from a concentration gradient and the effect of diffusion is well known. B~ = I for the case of 
Vak arising from a liquid layer of varying depth which will not produce diffusion. Bk therefore 
accounts for the influence of flow configurations which is not accounted for by Vak alone. 

4. VIEWS FAVORING THE CHOICE OF Bt-I  

(i) A derivation toward eliminating the PVa  term from the momentum equation was given 
by Ishii (1975). He defines a as a time (void) fraction and suggested that the term PVa is 
cancelled out via the interfacial source term when the bulk mean pressure is nearly equal to the 
interfacial mean pressure. His interfacial momentum source has corresponding terms of FkUm 
and Vk terms in our derivations (Chao, Sha & Soo 1978). Vernier (1975) suggested that the 
coefficient to Va in Ishii's derivation should be zero and should not have an effect on the PVa  

term via VaP. 

(ii) The concern of Gidaspow & Solbrig (1976) is how to get real characteristics. We have 
shown that the imaginary characteristics has arisen solely from omission of inertial coupling 
term and there is no need to drop PVa for the sake of stabilizing the solution (Soo 1976a, Sha 
& Soo 1977). They suggest that "since unreasonably high pressures are obtained, the partial 
pressure model without compensating large relative forces must be regarded as unrealistic in 
general". 

5. VIEWS FAVORING THE CHOICE OF 0<Bt <i 

(i) A review was given by Gidaspow & Solbrig (1976). They attributed PVa as an "extra 
type diffusive force". They cited Roberts & Donnelly (1974) as having "such force in their 
equations." They also cited Wallis and others and pointed out that "although there exist forces that 
depend upon gradients of volume fraction, the coefficient should not be simply the thermodynamic 
pressure P".  

(ii) Jackson et al. (1971) and Medlin et al. (1974) use a force in their momentum equation 
PVa, calling PVa an "effective force without giving an exact value". Gidaspow and Solbrig 
had expected that PAa contributes to "reduce the region of imaginary characteristics, but 
alone is not sufficient to give a system of partial equations that can be solved by stable finite 
difference techniques". They also called 

(P-Pint~acc)Va [71 

Ishii's stabilizing force, but it was insufficient to give real characteristics. 
(iii) G. B. Wallis (Gidaspow 1974) confirmed the above and suggested that PVa might be 

dropped for the case of stratified flow, but not in suspensions. He suggested "careful 
experiments". 

6. EVIDENCE THAT FAVORS B~ =0 

(i) The characteristic analysis in Soo (1976a) and Sha & Soo (1977) shows that the term PVa  

gives rise to a wave velocity in transient flow as in the case of transient one-dimensional single 
phase flow. 

(ii) A thermodynamic and therefore a basic evidence for the existence of the PVa term is 
seen in the physical case of adiabatic compression of a bubble, when the PVa term is carried 
into the energy equation in the form of [5]. When this is reduced to a single particle in a liquid 
at zero velocity of both phases and with negligible heat transfer or heat source, and dx] Uj--, dt, 
[5] in terms of  internal energy u reduces, with the continuity equation, to 

dul da 
a/~l ~ = - P -dT" [8] 

For a bubble which can be approximated as that of a perfect gas, P/~I = RT, dul = c~1 dT, 
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da/a = d VI V, V being the volume of the bubble and u is the internal energy 

c, dT dV 
R T +--~-=0 

or for ratios of specific heats y, we get 

[9] 

T V  y-I = constant, [ 10] 

the well known adiabatic relation when dissipation is absent. It is believed that resolution of a 
dilemma of this kind should be made in favor of the validity of the laws of thermodynamics. 

(iii) Extension from continuum mechanics to multiphase mechanics. In the case of a 
continuum gas mixture of species 2 with a trace of species 1, the one-dimensional momentum 
equation of species 1 can be written as: 

OPlU! ~_ OplUj 2 0 
Ot ax -O--~ p l ( U i -  [12) 2 = -  + pIFI(U2- Ui). [11] 

For the case of U2 = 0, P = constant and with concentration gradient aal/ax initially, [11] 
becomes 

0pl UI = _ p - ~ - -  rpl ul. [ 12] 
Ot 

For a constant P and T (a stipulation which simplifies the problem but not a necessary 
condition), [12] can be written as: 

ap~ U1 + Fp, U, = - P ap___~, 
Ot ~ Ox" [13] 

The continuity equation with no generation of species 1 can be written: 

Op_..! = Opl Ul 
Ot - O x "  [14] 

We take the derivative of [13] with respect to x to give: 

:J aplUi ~_FaPlUl= P ~2pl 
at ax ax ~, ax T. [15] 

U~ can be eliminated by combining [14] and [15] to give 

- ~ + F  ~-02 P 02P~ [16] 
at = ~ ax ~" 

Equation [16] is a diffusion equation with the inertial term a2p~l~t 2, which by itseff gives a 
wave equation with RHS. O~p~lOt 2 is negligible for large viscous resistance, and the resulting 
diffusion equation has a diffusivity of PI(:~F). For a perfect gas, the diffusivity becomes 
RTI(O/A), where 0 is the mean molecular speed of ~/(8RT/~r) and A is the mean free path of 
species 1 in 2, i.e. this diffusivity is nearly OA. 

Hence, PVa~ term contributes to the spread of species 1 which has an initial concentration 
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gradient. The velocity UI can be determined then from [14] or by expressing [16] in flux form 

a2(pl u1) + F a(Pl Ul) _ P a2(pl Ui) 
Ot 2 Ot - ~ Ox 2 " 

[17] 

Now we apply this to a multiphase mixture of fine particles of neutral buoyancy in water in 
a tube. If we apply [16] and [17] then PI(~IF) corresponds to a Brownian diffusivity. If we have 
solid spheres of neutral buoyancy in water in a tube, in the absence of field forces and adhesion 
and if we started out with a concentration gradient of these spheres, over a long time the 
mixture will become homogenous in the concentration of these spheres. This is because of the 
diffusion mechanism inherent in the continuum approximation via the continuity and the 
momentum equations of the trace species. Velocity U~ becomes zero, once ~allOx becomes 
zero. The PVal exists in this case in view of the mechanism embodied in [16]. 

7. DISCUSSION 

The range of 0 ~< B ~< 1 covers the whole range from dispersed to pure drift flux flow. Thus, the 
effects of BPVa term on system behavior under various conditions can be investigated. B = 0 for 
small particles has been rigorously demonstrated. PVak term is not the source of imaginary 
characteristics if the inertial coupling force is correctly accounted for. 

Both the continuity equation and the momentum equation of continuum mechanics are 
derivable from the kinetic transport equation (Chapman-Enskog--re: Hirschfelder, Curtis, & 
Bird 1954) via setting Enskog general function 0 as molecular mass m to get the continuity 
equation and to set ~ as molecular momentum my to get the momentum equation. When one 
applies the kinetic equation to two molecular species, he gets the diffusion equation. Therefore 
this background information suggests that the diffusion equation, while obtainable from 
molecular considerations, must be obtainable from the continuity and momentum equations of 
each species. The diffusivity in [16] gives, for P[~j = (k[mOT, F = 91~/2a 2/)1 = 9(p./ml) (2Ira/3), a 
value of kT/61rl~a, which is identical to the Brownian diffusivity. 

Of course, the above molecular theory does not account for wakes and turbulence directly. 
Bk empirically extends Brownian diffusion to turbulent diffusion. 

It is further interesting to note that for a system including a continuous phase of fluid f with 
several dispersed phases k (such as bubbles of different equivalent radii), mutual interaction 
among phases k are negligible and we have 

~ Bk dak + B/ da/ = O. 

Since a! = 1 - ~ a k ,  we get for constant values of Bk's 

Bt = ~ B ~ / ~ k , .  [191 

as the relation between the displacement factors of dispersed phases k with fluid f depending on 
flow configurations. 
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